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Numerical calculation of the Hopf index for three-dimensional magnetic textures
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To gain deeper insight into the complex, stable, and robust configurations of magnetic textures, topological
characterization has proven essential. In particular, while the skyrmion number is a well-established topological
invariant for two-dimensional magnetic textures, the Hopf index serves as a key topological descriptor for
three-dimensional magnetic structures. In this paper, we present and compare various methods for numerically
calculating the Hopf index, provide implementations, and offer a detailed analysis of their accuracy and
computational efficiency. Additionally, we identify and address common pitfalls and challenges associated with
the numerical computation of the Hopf index, offering insights for improving the robustness of these techniques.
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I. INTRODUCTION

In the study of topological invariants, the Hopf index
plays a crucial role in characterizing the topology of three-
dimensional (3D) vector fields [1]. In a plethora of physical
systems including liquid crystals [2], classical fluids [3,4],
superfluids [5], and magnetic materials [6], complex vector
field configurations like hopfions arise, the topology of which
is quantified by the Hopf index H .

A tool for numerically computing the Hopf index of a given
vector field F is the Whitehead integral formula [7,8]

H = −
∫

V
d3r F · A, (1)

where A is the gauge potential of the vector field, i.e. F =
∇ × A and V is the volume in which the vector field F is
defined [9]. Note that, for a vector field F to admit a gauge po-
tential A, the space in which the vector field is defined must be
simply connected, and F must be solenoidal, i.e. ∇ · F = 0.

For 3D magnetic textures, which are described by a nor-
malized vector field m, the Hopf index is typically computed
for the corresponding emergent magnetic field, the ith compo-
nent of which is given by

Fi = 1

8π
εi jkm · (∂ jm × ∂km), (2)

where i, j, k ∈ {x, y, z}. Note that ∇ · F = 0 in smooth mag-
netic textures, and thus a gauge potential exists on a simply
connected volume. We also note that an alternative for-
mulation to Eq. (1) is provided by a discrete geometric
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representation of the Hopf index [10]. In this approach, the 3D
topological index is determined through the linking number
of flux tubes associated with the vector field F. Moreover,
since the field lines of these flux tubes are aligned with the
preimages of m [11], we also include visualizations of the
preimages of the magnetic textures under consideration.

In this paper, we provide several implementations of the
numerical calculation of the Hopf index based on the White-
head equation in the finite-difference modeling using both
a general PYTHON script supplied in Ref. [12], as well as
an extension to the micromagnetic software MUMAX3 [13]
(software and extensions are available in Ref. [14]), and we
compare their accuracies. We benchmark the different codes
on a magnetic hopfion of which the emergent magnetic field F
is a vector-valued function with compact support, i.e. F �= 0
only in a finite region (see Fig. 1). For brevity, we will refer to
it as a hopfion with compact support in the following.

II. CHALLENGES OF COMPUTING
THE WHITEHEAD INTEGRAL

The reliance of Eq. (1) on the gauge potential A introduces
challenges. For a given vector field F, the gauge potential A is
not uniquely defined and varies under gauge transformations.
Thus, the integrand itself, which one could refer to as “Hopf
density,” is also a gauge-dependent quantity. In particular,
this means that, in contrast to the two-dimensional skyrmion
density described by Eq. (2), which is gauge invariant, it is
generally not meaningful to analyze and visualize the Hopf
density (see Appendix A).

The Hopf index H , however, despite being computed us-
ing a gauge-dependent A, must remain gauge independent
as a well-defined topological invariant. Here a very subtle
point arises which can be easily overlooked in numerical
computations, wherefore we discuss the seemingly smooth
gauge invariance argument in detail.
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FIG. 1. Sketch of a hopfion with compact support, where m = ẑ outside of the toroidal region illustrated by the gray dashed circles. (a)–(c)
Magnetization configuration m and (d), (e) corresponding emergent magnetic field F. (a) A selection of preimages (with their linking implying
H = 1) around the equator of S2. (d) The emergent magnetic field, as well as various isosurfaces of constant |F|. (b), (e) Cross sections in the
plane of z = 0. (c), (f) Cross sections in the plane of x = 0. The size of the hopfion relative to the boundaries is as in our benchmarking results.

A gauge transformation can be expressed as a shift of the
gauge potential A by the gradient of a scalar function χ ,
i.e. A → A′ = A + ∇χ . Note that the vector field F itself is
gauge invariant, as the curl of a gradient vanishes. Inserting
the gauge transformed potential into Eq. (1) yields

H ′ = −
∫

V
d3r F · A′ = H −

∫
V

d3r F · ∇χ. (3)

To ensure gauge invariance, the last term in Eq. (3) must
vanish. Using F · ∇χ = ∇ · (χF ), as ∇ · F = 0, one can ap-
ply Gauss’s theorem∫

V
d3r F · ∇χ =

∮
∂V

d2r χ F · n, (4)

where ∂V is the closed surface of the volume V with the
spatially varying surface normal n.

Thus H is only well defined if for “arbitrary” functions χ

the surface integral in Eq. (4) vanishes. To be more precise,
for a given vector field F, the integration volume, as well as χ

and, consequently, A, are not entirely arbitrary. For instance,
in the derivation, we assumed that χ is differentiable. Overall,
for a well-defined Hopf index, the integration volume V must
be chosen such that either F · n = 0 on the boundary of the
volume ∂V or the function space for A must be appropriately
restricted by the specific problem under consideration such
that the surface integral in Eq. (4) vanishes for any gauge
choice.

In many cases, the integration volume considered is
the infinite space R3. However, numerical calculations of
H using Eq. (1) typically require integration over finite,
bounded volumes. Equation (4) emphasizes that compari-
son and benchmarking of the results of different numerical
implementations, which may use different gauge choices, is
only fair if the vector field F has compact support. Then the

simply connected integration volume can be chosen such that
outside V , and on its boundary, F ≡ 0 [15].

As a side note we want to mention two cases going beyond
the case of a simply connected, finite-sized volume discussed
above: In the case of a multiply connected volume, such as a
nanoring, a term that accounts for the holes in the volume must
be added to Eq. (1), as discussed in Ref. [16]. For magnetic
textures which are periodic along a certain axis, the Hopf
index is computed per length, and the base space is S2 × T 1

[17–19]. The Hopf index is then a Z2 invariant [20].

III. NUMERICAL IMPLEMENTATIONS
OF THE HOPF INDEX

The calculation of the Hopf index requires the calculation
of the emergent magnetic field F (see Sec. III A). For this, we
provide two different methods. In the first method, we directly
compute the derivatives in Eq. (2) using finite-difference dis-
cretization. In the second, the emergent field is interpreted
geometrically as the solid angle subtended by magnetization
vectors over the lattice.

Having calculated F, we discuss two different approaches
by which the Hopf index H can be calculated. In Sec. III B,
we calculate the vector potential A explicitly and integrate
F · A over space as in Eq. (1). In Sec. III C, we circumvent
the need to explicitly calculate A by transforming F to Fourier
space [21].

A. Numerical calculation of the emergent magnetic field

The discretized emergent magnetic field can either be cal-
culated using a finite-difference discretization of Eq. (2) or
using a solid angle representation, discussed below.
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1. Finite-difference method

To calculate the emergent magnetic field using Eq. (2),
the derivatives need to be discretized to match the lattice
discretization. In the provided implementations, derivatives
of the magnetization that appear in the vector field F are
approximated and implemented using either the second-order
accurate two-point central differences stencil discretization
[22], e.g.

∂m(x, y, z)

∂y

∣∣∣∣
y=yi

= m(x, yi+1, z) − m(x, yi−1, z)

2�y

+ O[(�y)2], (5)

or a fourth-order accurate five-point stencil discretization, e.g.

∂m(x, y, z)

∂y

∣∣∣∣
y=yi

= 1

12�y
[−m(x, yi+2, z)

+ 8m(x, yi+1, z) − 8m(x, yi−1, z)

+ m(x, yi−2, z)] + O[(�y)4], (6)

where �y is the side length of a finite-difference cell in the
y direction. The finite-difference method with two-point and
five-point stencils gives errors in the calculated emergent mag-
netic field proportional to �y2 and �y4 respectively.

The function to obtain the emergent
magnetic field has been implemented as
ext_emergentmagneticfield_twopointstencil and
ext_emergentmagneticfield_fivepointstencil
for the two- and five-point stencils respectively. The
corresponding functions to calculate the Hopf index are
implemented as ext_hopfindex_twopointstencil and
ext_hopfindex_fivepointstencil.

2. Solid angle method

As the out-of-plane component of the effective field is
proportional to the in-plane skyrmion number density, we
can calculate F using a method for calculating the skyrmion
number developed by Berg and Lüscher [23], which has been
implemented in MUMAX3 [24]. In this method, the solid angle
subtended by the magnetization vectors is calculated.

Here, for example, the ith component of the emergent
magnetic field at lattice site zero is given by

Fi = 1
16 (q012 + q023 + q034 + q041), (7)

where qlmn is the solid angle subtended by the magnetization
vectors at lattice sites l , m, and n spanning the plane perpen-
dicular to direction i (see Fig. 2). It is defined by

qlmn = 2 arctan

(
ml · (mm × mn)

1 + ml · mm + ml · mn + mm · mn

)
. (8)

We have implemented this calculation of
the emergent magnetic field in MUMAX3 as
ext_emergentmagneticfield_solidangle.

B. Direct numerical implementation of the Whitehead equation

For the direct numerical implementation of Eq. (1) in a
micromagnetic solver which employs a finite-difference dis-
cretization of space such as MUMAX3, a gauge choice must

0
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2

1

j

k
i

FIG. 2. Illustration of the lattice sites contributing to the solid
angles summed over to calculate the ith component of the emergent
magnetic field F at the lattice site zero (indicated by the red ball).

first be made, and then all quantities need to be discretized to
match the space discretization.

We choose

Ax(x, y, z) = −
∫ y

−Ly/2

dy′Fz(x, y′, z),

Ay(x, y, z) = 0,

Az(x, y, z) =
∫ y

−Ly/2

dy′Fx(x, y′, z), (9)

where we integrate the vector potential along the y direction
in a box with volume V = LxLyLz, having side lengths Lx, Ly,
and Lz (see Fig. 3).

We discretize Eq. (9) as

Ax(x, y, z) ≈ Ax,i jk = −
j−1∑
j′=0

Fz,i j′k �y, (10)

Lx

Ly x

y

R

r

ψ

x cos ψ + y sin ψ − R

z

r ρ

φ

FIG. 3. Illustration of the coordinate system used for the hopfion
ansatz with compact support, where m = ẑ outside of the torus with
major radius R and minor radius r. In our benchmarking, R = 0.25,
r = 0.2, and Lx = Ly = 1.
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and analogously for Az. Here i, j, and k are the indices of the
cells in the x, y, and z directions, respectively. For the points
at which j = 0, we set the vector potential to zero [25]. The
Hopf index is then approximated by

H ≈ −�x �y �z
∑
i, j,k

F i jk · Ai jk . (11)

C. Implementation of the Whitehead equation in Fourier space

In the Coulomb gauge ∇ · A = 0, the Whitehead equa-
tion in Fourier space can be expressed as [21]

H = − i

2πNxNyNz

∑
k

F(−k) · [k × F(k)]

k2
, (12)

which eliminates the need to explicitly calculate the gauge
potential A. This can be obtained from Eq. (1) by writing
the emergent magnetic field F as the inverse discrete Fourier
transform of the field in Fourier space:

F(rlmn) =
∑
λμν

F(kλμν )e
2π i

(
lλ
Nx

+ mμ

Ny
+ nν

Nz

)
, (13)

and analogously for A; l , m, and n are integer indices labeling
the lattice in real space; λ, μ, and ν are integer indices labeling
the lattice in Fourier space; Nx is the total number of cells
in the x direction, and analogously for y and z. We imple-
ment the calculation of the Hopf index using this method in
MUMAX3 as ext_hopfindex_latticefourier, which first
uses the solid angle method to calculate the real-space emer-
gent magnetic field. The corresponding Fourier space field is
subsequently calculated using a fast Fourier transform.

D. Hopf index calculation in finite-element micromagnetics

To calculate the Hopf index according to Eq. (1) us-
ing the finite-element method (FEM), we first determine the
vector field F by computing the spatial derivatives of the
magnetization’s Cartesian components specified in Eq. (2).
In the Coulomb gauge, ∇ · A = 0, the vector potential A(r)
is then obtained by solving the Poisson equation �A =
−∇ × F, using a hybrid finite-element/boundary-element al-
gorithm similar to the methods described in Refs. [26,27]. We
use tetrahedral linear finite elements, which entail an accu-
mulation of discretization errors due to multiple numerical
differentiations in the right-hand side terms of Eq. (2) and the
Poisson equation.

The software to determine the Hopf index in FEM micro-
magnetics was developed as an add-on to the open-source
simulation software TETMAG [28]. More details of this numer-
ical method will be described in a separate work.

IV. BENCHMARKING NUMERICAL RESULTS
FOR A HOPFION WITH COMPACT SUPPORT

To benchmark and compare the different codes we use the
following rotationally symmetric ansatz for a hopfion with
Hopf index H = 1, with major radius R and minor radius
r (see Fig. 3). The magnetization vector field expressed in

Cartesian coordinates is

m(x, y, z) =
⎛
⎝cos 	 sin 


sin 	 sin 


cos 


⎞
⎠, (14)

where the azimuthal and polar angles are given by

	 = ψ − φ, (15a)


 =
{
π exp

(
1 − 1

1−(ρ/r)2

)
, if ρ < r

0, if ρ � r.
(15b)

The auxiliary radial coordinate ρ and auxiliary angular param-
eters φ and ψ that sweep around the minor radius r and major
radius R are respectively given by

ρ =
√

z2 + (x cos ψ + y sin ψ − R)2, (16a)

φ = arctan

(
z

x cos ψ + y sin ψ − R

)
, (16b)

ψ = arctan(y/x). (16c)

The magnetization texture of this ansatz is illustrated in
Fig. 1.

For this ansatz, the magnetization outside a toroidal region
with the major radius R and the minor radius r points strictly
along the z direction, and thus the emergent magnetic field
F is zero. To ensure gauge-independent results of our Hopf
index calculation, we choose the integration volume such
that it encloses the entire torus, i.e. F ≡ 0 on the integration
boundary ∂V . Another advantage of the ansatz of Eq. (15)
is that the magnetization is infinitely differentiable, i.e. it is
smooth.

In Appendix B we also discuss an example of a 3D moving
hopfion, which also shows the effect of the gauge dependence
of the Hopf index when only a finite integration region is
considered.

A. Comparison of the accuracy of the Hopf index calculations

To assess the accuracy of the various methods to calculate
the Hopf index, we plot it as a function of the side length
of the discretization cells � for the cubic system in Fig. 4.
For the finite-element results a cubic mesh was also used.
We benchmark our codes on the Hopfion ansatz, Eq. (15),
with major radius R = 0.25 and minor radius r = 0.2. The
cubic integration box has a side length of L = N� = 1 where
N is the number of cells in each direction. While we work
in dimensionless units here, L is arbitrarily rescalable. E.g.
L = 100 nm, R = 25 nm, r = 25 nm, and � = 2 nm would
imply N = 50 and the accuracy ranges from ≈80 to ≈99.8%
for the different methods.

We find that all methods converge towards the ideal value
of H = 1 as the discretization becomes finer. The Hopf index
calculation for the case that F is calculated using the solid
angle method is more accurate and converges faster than
both the finite-difference derivative method and the finite-
element method. This enhanced accuracy is due to the solid
angle method’s efficiency in covering the unit sphere with
fewer lattice points, even at coarser discretizations. In con-
trast, derivative-based approaches require finer resolution to
achieve comparable accuracy [23,24].

134408-4



NUMERICAL CALCULATION OF THE HOPF INDEX FOR … PHYSICAL REVIEW B 111, 134408 (2025)

0.010.020.030.040.05

Δ

0.5

0.6

0.7

0.8

0.9

1.0

C
al

cu
la

te
d

H

0.0100.0150.020

0.996

0.998

1.000

1.002

1.004

ext hopfindex fivepointstencil

ext hopfindex twopointstencil

ext hopfindex solidangle

ext hopfindex solidanglefourier

FEM

FIG. 4. Calculated Hopf index of the H = 1 hopfion ansatz,
Eq. (15), with major radius R = 0.25 and minor radius r = 0.2 in
a cubic system as a function of cell discretization side length � for
different numerical methods.

B. Computational speed of the Hopf index calculation

The methods to calculate the Hopf index are GPU ac-
celerated, and the presented results took on the order of
milliseconds to execute on a modern GPU. In Fig. 5, we
show the time required to calculate the Hopf index for our
compact hopfion ansatz as a function of the number of cells
N of the discretization grid. The calculation was run on an
Nvidia GeForce RTX 3070.

We see that all methods take approximately the same
amount of time to compute the Hopf index, except for
the Fourier space method discussed in Sec. III C, which
takes longer. Although the Fourier method does not re-
quire the explicit calculation of the vector potential A, we
find that calculating the Fourier transform of F is more
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FIG. 5. Time required to calculate the Hopf index as a function
of the side length of the cubic system for the various methods used to
calculate the Hopf index, averaged over 100 calculations. The error
bars show the standard error in the computational time.

computationally expensive. Because of this, the real-space
lattice method is likely to be more useful in most applications,
specifically ext_hopfindex_solidangle. The method us-
ing the calculation of the field in Fourier space is, however,
using the Coulomb gauge, and thus allows for cross-checking
the calculated Hopf index in different gauges.

V. DISCUSSION AND CONCLUSION

In this paper, we have provided and benchmarked mul-
tiple implementations of the numerical calculation of the
Whitehead formula Eq. (1) to compute the Hopf index of
a magnetic texture. We provide both MUMAX3 extensions
and general PYTHON codes to calculate the Hopf index.
Among the methods provided, we find that typically the
solid angle method implemented as the MUMAX3 exten-
sion ext_hopfindex_solidangle to calculate the emergent
magnetic field F and thus the Hopf index H is more accurate
than the finite-difference method, and should be preferred.

We pointed out common pitfalls and emphasized that the
vector potential A and the “Hopf density” F · A are gauge
dependent, and thus the integration region must be carefully
considered when calculating the Hopf index of a magnetic
texture. In a finite system, an ideal numerical value of 1 for
the Hopf index can only be obtained for a magnetic texture
with compact support.

To conclude, our paper eases the topological analysis of 3D
textures while maintaining high accuracy and computational
efficiency.

ACKNOWLEDGMENTS

We thank Jan Masell, Markus Garst, Nikolai Kiselev, and
Volodymyr Kravchuk for fruitful discussions. We acknowl-
edge funding from the German Research Foundation Project
No. 320163632 (Emmy Noether), Project No. 403233384
(SPP2137 Skyrmionics), Project No. 278162697 (SFB 1242,
project B10), Project No. 405553726 (CRC/TRR 270, project
B12) and Project No. 505561633 in the TOROID project co-
funded by the French National Research Agency ANR under
Contract No. ANR-22-CE92-0032. J.L. is supported by the
Research Foundation Flanders through Senior Postdoctoral
Research Fellowship No. 12W7622N.

DATA AVAILABILITY

The finite-difference scripts used to generate the results in
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FIG. 6. Contours of constant Hopf density F · A of a hopfion
texture constructed by stereographic projection in the z = 0 plane
for the gauge choice of Eq. 9 (left) and the Coulomb gauge used in
the Fourier space method (right).

APPENDIX A: GAUGE DEPENDENCE
OF THE CALCULATED HOPF INDEX

In the main text, we have emphasized the gauge depen-
dence of the Hopf density F · A. In Fig. 6, we show contours
of constant Hopf density for two different gauges—the gauge
of Eq. (3) and the Coulomb gauge. The spatial distribution of
the contours illustrates the gauge dependence of the calculated
value of the Hopf index when the integration region is not
carefully considered.

Here, the hopfion ansatz used is the standard stereographic
projection (see e.g. Ref. [31]) to allow for an analytical ex-
pression of the Hopf density [32]. However, this Hopfion
ansatz does not have compact support, i.e. F only converges
to zero at infinity increasing the challenges of choosing inte-
gration regions for the calculation of the Hopf index.

For completeness, the Hopf density expres-
sion (ext_hopfindexdensity_*) as well as the
possibility to export the emergent magnetic field
(ext_emergentmagneticfield_*) are also included in
the implementations.

APPENDIX B: MOVING HOPFIONS

Vortex rings in a system with symmetric exchange interac-
tions and uniaxial anisotropy have been shown to propagate.
These vortex rings travel with their symmetry axis aligned
along the easy axis, as illustrated in Fig. 7 [33–35]. Using our
implementations, we calculate the Hopf index for a magnetic
vortex ring (which does not have a compact support) in a
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FIG. 7. Calculation of the Hopf index of a propagating hopfion
in a subregion of the system. Top left: Preimages of the 3D magneti-
zation texture, with a slice in the xz plane. Top right: z component of
the magnetization of the slice shown in the top-left image. The green
rectangle illustrates the region in which the Hopf index is calculated,
and the white arrow indicates the direction of propagation of the
hopfion. Bottom: Hopf index over time in the subregion calculated
using the various methods discussed in the main text.

finite region for such a system to analyze whether or not the
propagating texture is topologically trivial.

The results are shown in Fig. 7, as well as in the
Supplemental Material [30]. It is important to note that, when
the hopfion structure and its Hopf density are almost entirely
within the integration region (marked as a green rectangle),
the Hopf index is approximately the ideal value of 1 for all
methods except for that using the less accurate two-point
stencil.

At the times for which the hopfion and/or its Hopf density
is crossing into and out of the highlighted region, however,
there is a significant discrepancy between the methods. The
key difference, despite numerical accuracy, originates from
the gauge choice, in agreement with Fig. 6. This further high-
lights the need to choose the integration region carefully such
that the hopfion and its Hopf density are (almost) entirely
localized within the region of interest.
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